
2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 1/46

StevenPoitras.com

The Nutanix Bible

1. Intro

2. Book of Nutanix

Architecture

Converged Platform

Cluster Components

Data Structure

I/O Path Overview

How It Works

Data Protection

Data Locality

Scalable Metadata

Shadow Clones

Elastic Dedupe Engine

Networking and I/O

CVM Autopathing

Disk Balancing

Software-Defined Controller Architecture

SearchHOME THE NUTANIX BIBLE ASKSTEVE ABOUT

http://stevenpoitras.com/
http://stevenpoitras.com/
http://stevenpoitras.com/the-nutanix-bible/
http://stevenpoitras.com/2013/06/introducing-asksteve/
http://stevenpoitras.com/about/


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 2/46

Storage Tiering and Prioritization

Storage Layers and Monitoring

APIs & Interfaces

Availability Domains

Snapshots & Clones - new!

Multi-Site Disaster Recovery - new!

Administration

Important Pages

Cluster Commands

NCLI

Metrics & Thresholds

Gflags

Troubleshooting

3. Book of vSphere

Architecture

How It Works

Array Offloads – VAAI

Administration

Important Pages

Command Reference

Metrics & Thresholds

Troubleshooting

4. Book of Hyper-V

Architecture

How It Works

Array Offloads – ODX

Administration

Important Pages

Command Reference

Metrics & Thresholds

Troubleshooting

5. Revisions



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 3/46

Intro

Welcome to The Nutanix Bible!  I work the with Nutanix platform on a daily basis – trying to find issues, push its limits

as well as administer it for my production benchmarking lab.  This page is being produced to serve as a living document

outlining tips and tricks used every day by myself and a variety of engineers at Nutanix.  This will also include

summary items discussed as part of the Advanced Nutanix series.  NOTE: This is not an official reference so tread at

your own risk!

Book of Nutanix

Architecture

Converged Platform

The Nutanix solution is a converged storage + compute solution which leverages local components and creates a

distributed platform for virtualization aka virtual computing platform. The solution is a bundled hardware + software

appliance which houses 2 (6000/7000 series) or 4 nodes (1000/2000/3000/3050 series) in a 2U footprint.

Each node runs an industry standard hypervisor (ESXi, KVM, Hyper-V currently) and the Nutanix Controller VM (CVM).

 The Nutanix CVM is what runs the Nutanix software and serves all of the I/O operations for the hypervisor and all VMs

running on that host.  For the Nutanix units running VMware vSphere, the SCSI controller, which manages the SSD and

HDD devices, is directly passed to the CVM leveraging VM-Direct Path (Intel VT-d).  In the case of Hyper-V the storage

devices are passed through to the CVM.

Below is an example of what a typical node logically looks like:

Together, a group of Nutanix Nodes forms a distributed platform called the Nutanix Distributed Filesystem (NDFS).

 NDFS appears to the hypervisor like any centralized storage array, however all of the I/Os are handled locally to provide

the highest performance.  More detail on how these nodes form a distributed system can be found below.

Below is an example of how these Nutanix nodes form NDFS:

http://stevenpoitras.com/tag/nutanix/
http://www.nutanix.com/virtual-computing-platform/
http://software.intel.com/en-us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-platforms-for-efficient-virtualization-of-io-devices
http://cdn1.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_NodeDetail.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 4/46

top

Cluster Components

The Nutanix platform is composed of the following high-level components:

Cassandra

Key Role: Distributed metadata store

Description: Cassandra stores and manages all of the cluster metadata in a distributed ring like manner based

upon a heavily modified Apache Cassandra.  The Paxos algorithm is utilized to enforce strict consistency.  This

service runs on every node in the cluster.  Cassandra is accessed via an interface called Medusa.

Zookeeper

Key Role: Cluster configuration manager

Description: Zeus stores all of the cluster configuration including hosts, IPs, state, etc. and is based upon Apache

Zookeeper.  This service runs on three nodes in the cluster, one of which is elected as a leader.  The leader receives

all requests and forwards them to the peers.  If the leader fails to respond a new leader is automatically elected.

  Zookeeper is accessed via an interface called Zeus.

Stargate

http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/CVM_Dist.png
http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_ClusterComponents.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 5/46

Key Role: Data I/O manager

Description: Stargate is responsible for all data management and I/O operations and is the main interface from

the hypervisor (via NFS, iSCSI or SMB).  This service runs on every node in the cluster in order to serve localized I/O.

Curator

Key Role: Map reduce cluster management and cleanup

Description: Curator is responsible for managing and distributing tasks throughout the cluster including disk

balancing, proactive scrubbing, and many more items.  Curator runs on every node and is controlled by an elected

Curator Master who is responsible for the task and job delegation.

Prism

Key Role: UI and API

Description: Prism is the management gateway for component and administrators to configure and monitor the

Nutanix cluster.  This includes Ncli, the HTML5 UI and REST API.  Prism runs on every node in the cluster and uses

an elected leader like all components in the cluster.

Genesis

Key Role: Cluster component & service manager

Description:  Genesis is a process which runs on each node and is responsible for any services interactions

(start/stop/etc.) as well as for the initial configuration.  Genesis is a process which runs independently of the

cluster and does not require the cluster to be configured/running.  The only requirement for genesis to be running

is that Zookeeper is up and running.  The cluster_init and cluster_status pages are displayed by the genesis

process.

Chronos

Key Role: Job and Task scheduler

Description: Chronos is responsible for taking the jobs and tasks resulting from a Curator scan and

scheduling/throttling tasks among nodes.  Chronos runs on every node and is controlled by an elected Chronos

Master who is responsible for the task and job delegation and runs on the same node as the Curator Master.

Cerebro

Key Role: Replication/DR manager

Description: Cerebro is responsible for the replication and DR capabilities of NDFS.  This includes the scheduling

of snapshots, the replication to remote sites, and the site migration/failover.  Cerebro runs on every node in the

Nutanix cluster and all nodes participate in replication to remote clusters/sites.

Pithos

Key Role: vDisk configuration manager

Description: Pithos is responsible for vDisk (NDFS file) configuration data.  Pithos runs on every node and is built

on top of Cassandra.

top



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 6/46

Data Structure

The Nutanix Distributed Filesystem is composed of the following high-level structs:

Storage Pool

Key Role: Group of physical devices

Description: A storage pool is a group of physical storage devices including PCIe SSD, SSD, and HDD devices for

the cluster.  The storage pool can span multiple Nutanix nodes and is expanded as the cluster scales.  In most

configurations only a single storage pool is leveraged.

Container

Key Role: Group of VMs/files

Description: A container is a logical segmentation of the Storage Pool and contains a group of VM or files (vDisks).

 Some configuration options (eg. RF) are configured at the container level, however are applied at the individual

VM/file level.  Containers typically have a 1 to 1 mapping with a datastore (in the case of NFS/SMB).

vDisk

Key Role: vDisk

Description: A vDisk is any file over 512KB on NDFS including .vmdks and VM hard disks.  vDisks are composed of

extents which are grouped and stored on disk as an extent group.

Below we show how these map between NDFS and the hypervisor:

Extent

Key Role: Logically contiguous data

Description: A extent is a 1MB piece of logically contiguous data which consists of n number of contiguous blocks

(varies depending on guest OS block size).  Extents are written/read/modified on a sub-extent basis (aka slice) for

granularity and efficiency.  An extent’s slice may be trimmed when moving into the cache depending on the

amount of data being read/cached.

Extent Group

Key Role: Physically contiguous stored data

Description: A extent group is a 1MB or 4MB piece of physically contiguous stored data.  This data is stored as a

file on the storage device owned by the CVM.  Extents are dynamically distributed among extent groups to provide

data striping across nodes/disks to improve performance.  NOTE: as of 4.0 extent groups can now be either 1MB or

4MB depending on dedupe.

http://cdn2.stevenpoitras.com/wp-content/uploads/2013/09/SP_structure.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 7/46

Below we show how these structs relate between the various filesystems:

 

Here is another graphical representation of how these units are logically related:

 

top

I/O Path Overview

The Nutanix I/O path is composed of the following high-level components:

http://cdn2.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_DataLayout_Text.png
http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_DataLayout_Graphical.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 8/46

OpLog

Key Role: Persistent write buffer

Description: The Oplog is similar to a filesystem journal and is built to handle bursty writes, coalesce them and

then sequentially drain the data to the extent store.  Upon a write the OpLog is synchronously replicated to another

n number of CVM’s OpLog before the write is acknowledged for data availability purposes.  All CVM OpLogs partake

in the replication and are dynamically chosen based upon load.  The OpLog is stored on the SSD tier on the CVM to

provide extremely fast write I/O performance, especially for random I/O workloads.  For sequential workloads the

OpLog is bypassed and the writes go directly to the extent store.  If data is currently sitting in the OpLog and has

not been drained, all read requests will be directly fulfilled from the OpLog until they have been drain where they

would then be served by the extent store/content cache.  For containers where fingerprinting (aka Dedupe) has

been enabled, all write I/Os will be fingerprinted using a hashing scheme allowing them to be deduped based upon

fingerprint in the content cache.

Extent Store

Key Role: Persistent data storage

Description: The Extent Store is the persistent bulk storage of NDFS and spans SSD and HDD and is extensible to

facilitate additional devices/tiers.  Data entering the extent store is either being A) drained from the OpLog or B) is

sequential in nature and has bypassed the OpLog directly.  Nutanix ILM will determine tier placement dynamically

based upon I/O patterns and will move data between tiers.

Content Cache

Key Role: Dynamic read cache

Description: The Content Cache (aka “Elastic Dedupe Engine”) is a deduped read cache which spans both the

CVM’s memory and SSD.  Upon a read request of data not in the cache (or based upon a particular fingerprint) the

data will be placed in to the single-touch pool of the content cache which completely sits in memory where it will

use LRU until it is ejected from the cache.  Any subsequent read request will “move” (no data is actually moved,

just cache metadata) the data into the memory portion of the multi-touch pool which consists of both memory and

SSD.  From here there are two LRU cycles, one for the in-memory piece upon which eviction will move the data to

the SSD section of the multi-touch pool where a new LRU counter is assigned.  Any read request for data in the

http://cdn1.stevenpoitras.com/wp-content/uploads/2013/09/ExtentCache.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 9/46

multi-touch pool will cause the data to go to the peak of the multi-touch pool where it will be given a new LRU

counter.  Fingerprinting is configured at the container level and can be configured via the UI.  By default

fingerprinting is disabled.

Below we show a high-level overview of the Content Cache:

Extent Cache

Key Role: In-memory read cache

Description: The Extent Cache is an in-memory read cache that is completely in the CVM’s memory.  This will

store non-fingerprinted extents for containers where fingerprinting and dedupe is disabled.  As of version 3.5 this

is separate from the Content Cache, however these will be merging in a subsequent release.

top

How It Works

Data Protection

The Nutanix platform currently uses a resiliency factor aka replication factor (RF) and checksum to ensure data

redundancy and availability in the case of a node or disk failure or corruption.  As explained above the OpLog acts as a

staging area to absorb incoming writes onto a low-latency SSD tier.  Upon being written to the local OpLog the data is

synchronously replicated to another one or two Nutanix CVM’s OpLog (dependent on RF) before being acknowledged

(Ack) as a successful write to the host.  This ensures that the data exists in at least two or three independent locations

and is fault tolerant.

NOTE: For RF3 a minimum of 5 nodes is required since metadata will be RF5.  Data RF is configured via Prism and is

done at the container level.

All nodes participate in OpLog replication to eliminate any “hot nodes” and ensuring linear performance at scale.

 While the data is being written a checksum is computed and stored as part of its metadata. Data is then

asynchronously drained to the extent store where the RF is implicitly maintained.  In the case of a node or disk failure

the data is then re-replicated among all nodes in the cluster to maintain the RF.  Any time the data is read the

checksum is computed to ensure the data is valid.  In the event where the checksum and data don’t match the replica

http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/CC_Pools.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 10/46

of the data will be read and will replace the non-valid copy.

Below we show an example of what this logically looks like:

 

Data Locality

Being a converged (compute+storage) platform, I/O and data locality is key to cluster and VM performance with

Nutanix.  As explained above in the I/O path, all read/write IOs are served by the local Controller VM (CVM) which is on

each hypervisor adjacent to normal VMs.  A VM’s data is served locally from the CVM and sits on local disks under the

CVM’s control.  When a VM is moved from one hypervisor node to another (or during a HA event) the newly migrated

VM’s data will be served by the now local CVM.

When reading old data (stored on the now remote node/CVM) the I/O will be forwarded by the local CVM to the remote

CVM.  All write I/Os will occur locally right away.  NDFS will detect the I/Os are occurring from a different node and will

migrate the data locally in the background allowing for all read I/Os to now be served locally.  The data will only be

migrated on a read as to not flood the network.

Below we show an example of how data will “follow” the VM as it moves between hypervisor nodes:

Scalable Metadata

Metadata is at the core of any intelligent system and is even more critical for any filesystem or storage array.  In terms

of NDFS there are a few key structs that are critical for its success: it has to be right 100% of the time (aka. “strictly

consistent”), it has to be scalable,  and it has to perform, at massive scale.  As mentioned in the architecture section

http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_OplogReplication.png
http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Locality3.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 11/46

above, NDFS utilizes a “ring like” structure as a key-value store which stores essential metadata as well as other

platform data (eg. stats, etc.).

In order to ensure metadata availability and redundancy a RF is utilized among an odd amount of nodes (eg. 3, 5, etc.).

Upon a metadata write or update the row is written to a node in the ring and then replicated to n number of peers

(where n is dependent on cluster size).  A majority of nodes must agree before anything is committed which is enforced

using the paxos algorigthm.  This ensures strict consistency for all data and metadata stored as part of the platform.

Below we show an example of a metadata insert/update for a 4 node cluster:

Performance at scale is also another important struct for NDFS metadata.  Contrary to traditional dual-controller or

“master” models, each Nutanix node is responsible for a subset of the overall platform’s metadata.  This eliminates the

traditional bottlenecks by allowing metadata to be served and manipulated by all nodes in the cluster.  A consistent

hashing scheme is utilized to minimize the redistribution of keys during cluster size modifications (aka. “add/remove

node”) When the cluster scales (eg. from 4 to 8 nodes), the nodes are inserted throughout the ring between nodes for

“block awareness” and reliability.

Below we show an example of the metadata “ring” and how it scales:

Shadow Clones

The Nutanix Distributed Filesystem has a feature called ‘Shadow Clones’ which allows for distributed caching of

particular vDisks or VM data which is in a ‘multi-reader’ scenario.  A great example of this is during a VDI deployment

many ‘linked clones’ will be forwarding read requests to a central master or ‘Base VM’.  In the case of VMware View this

is called the replica disk and is read by all linked clones and in XenDesktop this is called the MCS Master VM.  This will

also work in any scenario which may be a multi-reader scenario (eg. deployment servers, repositories, etc.).

http://en.wikipedia.org/wiki/Paxos_algorithm
http://cdn2.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Ring.png
http://cdn1.stevenpoitras.com/wp-content/uploads/2013/10/Cassandra_ring.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 12/46

Data or I/O locality is critical for the highest possible VM performance and a key struct of NDFS.  With Shadow Clones,

NDFS will monitor vDisk access trends similar to what it does for data locality.  However in the case there are requests

occurring from more than two remote CVMs (as well as the local CVM), and all of the requests are read I/O, the vDisk

will be marked as immutable.  Once the disk has been marked as immutable the vDisk can then be cached locally by

each CVM making read requests to it (aka Shadow Clones of the base vDisk). This will allow VMs on each node to read

the Base VM’s vDisk locally.

In the case of VDI, this means the replica disk can be cached by each node and all read requests for the base will be

served locally.  NOTE:  The data will only be migrated on a read as to not flood the network and allow for efficient cache

utilization.  In the case where the Base VM is modified the Shadow Clones will be dropped and the process will start

over.  Shadow clones are disabled by default (as of 3.5) and can be enabled/disabled using the following NCLI

command: ncli cluster edit-params enable-shadow-clones=true.

Below we show an example of how Shadow Clones work and allow for distributed caching:

Elastic Dedupe Engine

The Elastic Dedupe Engine is a software based feature of NDFS which allows for data deduplication in the capacity

(HDD) and performance (SSD/Memory) tiers.  Sequential streams of data are fingerprinted during ingest using a SHA-1

hash at a 16K granularity.  This fingerprint is only done on data ingest and is then stored persistently as part of the

written block’s metadata.  NOTE: Initially a 4K granularity was used for fingerprinting, however after testing 16K

offered the best blend of dedupability with reduced metadata overhead.  When deduped data is pulled into the cache

this is done at 4K.

Contrary to traditional approaches which utilize background scans, requiring the data to be re-read, Nutanix performs

the fingerprint in-line on ingest.  For duplicate data that can be deduplicated in the capacity tier the data does not

need to be scanned or re-read, essentially duplicate copies can be removed.

Below we show an example of how the Elastic Dedupe Engine scales and handles local VM I/O requests:

http://cdn1.stevenpoitras.com/wp-content/uploads/2013/09/ndfs_shadowclone_14pt.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 13/46

Fingerprinting is done during data ingest of data with an I/O size of 64K or greater.  Intel acceleration is leveraged for

the SHA-1 computation which accounts for very minimal CPU overhead.  In cases where fingerprinting is not done

during ingest (eg. smaller I/O sizes), fingerprinting can be done as a background process. The Elastic Deduplication

Engine spans both the capacity disk tier (HDD), but also the performance tier (SSD/Memory).  As duplicate data is

determined, based upon multiple copies of the same fingerprints, a background process will remove the duplicate data

using the NDFS Map Reduce framework (curator).

For data that is being read, the data will be pulled into the NDFS Content Cache which is a multi-tier/pool cache.  Any

subsequent requests for data having the same fingerprint will be pulled directly from the cache.  To learn more about

the Content Cache and pool structure, please refer to the ‘Content Cache’ sub-section in the I/O path overview, or click

HERE.

Below we show an example of how the Elastic Dedupe Engine interacts with the NDFS I/O path:

Networking and I/O

The Nutanix platform does not leverage any backplane for inter-node communication and only relies on a standard

10GbE network.  All storage I/O for VMs running on a Nutanix node is handled by the hypervisor on a dedicated private

network.  The I/O request will be handled by the hypervisor which will then forward the request to the private IP on the

local CVM.  The CVM will then perform the remote replication with other Nutanix nodes using its external IP over the

public 10GbE network.

http://cdn3.stevenpoitras.com/wp-content/uploads/2014/04/NDFS_EDE_OnDisk2.png
http://cdn2.stevenpoitras.com/wp-content/uploads/2013/10/ContentCache_dedupe.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 14/46

For all read requests these will be served completely locally in most cases and never touch the 10GbE network. This

means that the only traffic touching the public 10GbE network will be NDFS remote replication traffic and VM network

I/O.  There will however be cases where the CVM will forward requests to other CVMs in the cluster in the case of a

CVM being down or data being remote.  Also, cluster wide tasks such as disk balancing will temporarily generate I/O on

the 10GbE network.

Below we show an example of how the VM’s I/O path interacts with the private and public 10GbE network:

CVM Autopathing

Reliability and resiliency is a key, if not the most important, piece to NDFS.  Being a distributed system NDFS is built to

handle component, service and CVM failures.  In this section I’ll cover how CVM “failures” are handled (I’ll cover how

we handle component failures in future update).  A CVM “failure” could include a user powering down the CVM, a CVM

rolling upgrade, or any event which might bring down the CVM.

NDFS has a feature called autopathing where when a local CVM becomes unavailable the I/Os are then transparently

handled by other CVMs in the cluster. The hypervisor and CVM communicate using a private 192.168.5.0 network on a

dedicated vSwitch (more on this above).  This means that for all storage I/Os these are happening to the internal IP

addresses on the CVM (192.168.5.2).  The external IP address of the CVM is used for remote replication and for CVM

communication.

Below we show an example of what this looks like:

  In the event of a local CVM failure the local 192.168.5.2 addresses previously hosted by the local CVM is unavailable.

 NDFS will automatically detect this outage and will redirect these I/Os to another CVM in the cluster over 10GbE.  The

http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Network.png
http://cdn2.stevenpoitras.com/wp-content/uploads/2013/09/Node_net_IO.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 15/46

re-routing is done transparently to the hypervisor and VMs running on the host.  This means that even if a CVM is

powered down the VMs will still continue to be able to perform I/Os to NDFS.  NDFS is also self-healing meaning it will

detect the CVM has been powered off and will automatically reboot or power-on the local CVM.  Once the local CVM is

back up and available, traffic will then seamlessly be transferred back and served by the local CVM.

Below we show a graphical representation of how this looks for a failed CVM:

Disk Balancing

NDFS is designed to be a very dynamic platform which can react to various workloads as well as allow heterogeneous

node types: compute heavy (3050, etc.) and storage heavy (60X0, etc.) to be mixed in a single cluster.  Ensuring uniform

distribution of data is an important item when mixing nodes with larger storage capacities.

NDFS has a native feature called disk balancing which is used to ensure uniform distribution of data throughout the

cluster.  Disk balancing works on a node’s utilization of its local storage capacity and is integrated with NDFS ILM.  Its

goal is to keep utilization uniform among nodes once the utilization has breached a certain threshold.

Below we show an example of a mixed cluster (3050 + 6050) in a “unbalanced” state:

Disk balancing leverages the NDFS Curator framework and is run as a scheduled process as well as when a threshold

has been breached (eg. local node capacity utilization > n %).  In the case where the data is not balanced Curator will

determine which data needs to be moved and will distribute the tasks to nodes in the cluster. In the case where the

node types are homogeneous (eg. 3050) utilization should be fairly uniform.

However, if there are certain VMs running on a node which are writing much more data than others there can become a

skew in the per node capacity utilization.  In this case disk balancing would run and move the coldest data on that node

to other nodes in the cluster. In the case where the node types are heterogeneous (eg. 3050 + 6020/50/70), or where a

http://cdn2.stevenpoitras.com/wp-content/uploads/2013/09/IO_Autopath2.png
http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Diskbalancing_unbalanced.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 16/46

node may be used in a “storage only” mode (not running any VMs), there will likely be a requirement to move data.

Below we show an example the mixed cluster after disk balancing has been run in a “balanced” state:

In some scenarios customers might run some nodes in a “storage only” state where only the CVM will run on the node

whose primary purpose is bulk storage capacity.  In this case the full nodes memory can be added to the CVM to provide

a much larger read cache.

Below we show an example of how a storage only node would look in a mixed cluster with disk balancing moving data

to it from the active VM nodes:

Software-Defined Controller Architecture

As mentioned above (likely numerous times), the Nutanix platform is a software based solution which ships as a

bundled software + hardware appliance.  The controller VM is where the vast majority of the Nutanix software and logic

sits and was designed from the beginning to be an extensible and pluggable architecture.

A key benefit to being software defined and not relying upon any hardware offloads or constructs is around

extensibility.  Like with any product life cycle there will always be advancements and new features which are

introduced.  By not relying on any custom ASIC/FPGA or hardware capabilities, Nutanix can develop and deploy these

new features through a simple software update.  This means that the deployment of a new feature (say deduplication)

can be deployed by upgrading the current version of the Nutanix software.  This also allows newer generation features

to be deployed on legacy hardware models.

For example, say you’re running a workload running an older version of Nutanix software on a prior generation

http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Diskbalancing_balanced.png
http://cdn2.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Diskbalancing_storage.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 17/46

hardware platform (eg. 2400).  The running software version doesn’t provide deduplication capabilities which your

workload could benefit greatly from.  To get these features you perform a rolling upgrade of the Nutanix software

version while the workload is running, and whala you now have deduplication.  It’s really that easy.

Similar to features, the ability to create new “adapters” or interfaces into NDFS is another key capability.  When the

product first shipped it solely supported iSCSI for I/O from the hypervisor, this has now grown to include NFS and SMB.

 In the future there is the ability to create new adapters for various workloads and hypervisors (HDFS, etc.).  And again,

all deployed via a software update.

This is contrary to mostly all legacy infrastructures as a hardware upgrade or software purchase was normally required

to get the “latest and greatest” features.  With Nutanix it’s different, since all features are deployed in software they

can run on any hardware platform, any hypervisor and be deployed through simple software upgrades.

Below we show a logical representation of what this software-defined controller framework looks like:

Storage Tiering and Prioritization

The Disk Balancing section above talked about how storage capacity was pooled among all nodes in a Nutanix cluster

and that ILM would be used to keep hot data local.  A similar concept applies to disk tiering in which the cluster’s SSD

and HDD tiers are cluster wide and NDFS ILM is responsible for triggering data movement events.

A local node’s SSD tier is always the highest priority tier for all I/O generated by VMs running on that node, however all

of the cluster’s SSD resources are made available to all nodes within the cluster.  The SSD tier will always offer the

highest performance and is a very important thing to manage for hybrid arrays.

The tier prioritization can be classified at a high-level by the following:

http://cdn2.stevenpoitras.com/wp-content/uploads/2013/09/SD_Controller_Arch2.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 18/46

Specific types of resources (eg. SSD, HDD, etc.) are pooled together and form a cluster wide storage tier.  This means

that any node within the cluster can leverage the full tier capacity, regardless if it is local or not.

Below we show a high level example of how this pooled tiering looks:

A common question is what happens when a local node’s SSD becomes full?  As mentioned in the Disk Balancing

section a key concept is trying to keep uniform utilization of devices within disk tiers.  In the case where a local node’s

SSD utilization is high, disk balancing will kick in to move the coldest data on the local SSDs to the other SSDs

throughout the cluster.  This will free up space on the local SSD to allow the local node to write to SSD locally instead of

going over the network.  A key point to mention is that all CVMs and SSDs are used for this remote I/O to eliminate any

potential bottlenecks and remediate some of the hit by performing I/O over the network.

The other case is when the overall tier utilization breaches a specific threshold

[curator_tier_usage_ilm_threshold_percent (Default=75)] where NDFS ILM will kick in and as part of a Curator job will

down-migrate data from the SSD tier to the HDD tier.  This will bring utilization within the threshold mentioned above

http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Tier_HighLevel2.png
http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Tier_Pooling.png
http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Tier_Utilization2.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 19/46

or free up space by the following amount [curator_tier_free_up_percent_by_ilm (Default=15)], whichever is greater.

The data for down-migration is chosen using last access time. In the case where the SSD tier utilization is 95%, 20% of

the data in the SSD tier will be moved to the HDD tier (95% –> 75%).  However, if the utilization was 80% only 15% of

the data would be moved to the HDD tier using the minimum tier free up amount.

NDFS ILM will constantly monitor the I/O patterns and (down/up)-migrate data as necessary as well as bring the

hottest data local regardless of tier.

Storage Layers and Monitoring

The Nutanix platform monitors storage at multiple layers throughout the stack ranging from the VM/Guest OS all the

way down to the physical disk devices.  Knowing the various tiers and how these relate is important whenever

monitoring the solution and allows you to get full visibility of how the ops relate.

Below we show the various layers of where operations are monitored and the relative granularity which are explained

below:

Virtual Machine Layer

Key Role: Metrics reported by the Guest OS

Description: Virtual Machine or Guest OS level metrics are pulled directly from the hypervisor and represent the

performance the Guest OS is seeing and is indicative of the I/O performance the application is seeing.

When to use: When troubleshooting or looking for OS or application level detail

Hypervisor Layer

Key Role: Metrics reported by the Hypervisor(s)

Description: Hypervisor level metrics are pulled directly from the hypervisor and represent the most accurate

metrics the hypervisor(s) are seeing.  This data can be viewed for one of more hypervisor node(s) or the aggregate

cluster.  This layer will provide the most accurate data in terms of what performance the platform is seeing and

should be leveraged in most cases.  In certain scenarios the hypervisor may combine or split operations coming

http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Tier_DownMigration.png
http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_MetricsTiers3.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 20/46

from VMs which can show the difference in metrics reported by the VM and hypervisor.  These numbers will also

include cache hits served by the Nutanix CVMs.

When to use: Most common cases as this will provide the most detailed and valuable metrics

Controller Layer

Key Role: Metrics reported by the Nutanix Controller(s)

Description: Controller level metrics are pulled directly from the Nutanix Controller VMs (eg. Stargate 2009 page)

and represent what the Nutanix front-end is seeing from NFS/SMB/iSCSI or any back-end operations (eg. ILM, disk

balancing, etc.).  This data can be viewed for one of more Controller VM(s) or the aggregate cluster.  The metrics

seen by the Controller Layer should match those seen by the hypervisor layer, however will include any backend

operations (eg. ILM, disk balancing).  These numbers will also include cache hits served by memory.

When to use: Similar to the hypervisor layer, can be used to show how much backend operation is taking place

Disk Layer

Key Role: Metrics reported by the Disk Device(s)

Description: Disk level metrics are pulled directly from the physical disk devices (via the CVM) and represent

what the back-end is seeing.  This includes data hitting the OpLog or Extent Store where an I/O is performed on

the disk.  This data can be viewed for one of more disk(s), the disk(s) for a particular node or the aggregate disks in

the cluster.  In common cases it is expected that the disk ops should match the number of incoming writes as well

as reads not served from the memory portion of the cache.  Any reads being served by the memory portion of the

cache will not be counted here as the op is not hitting the disk device.

When to use: When looking to see how many ops are served from cache or hitting the disks

APIs and Interfaces

Core to any dynamic or “Software Defined” environment, Nutanix provides a vast array of interfaces allowing for

simple programmability and interfacing. Here are the main interfaces:

REST API

NCLI

Scripting interfaces – more coming here soon 

Core to this is the REST API which exposes every capability and data point of the Prism UI and allows for orchestration

or automation tools to easily drive Nutanix action.  This enables tools like VMware’s vCAC or Microsoft’s System Center

Orchestrator to easily create custom workflows for Nutanix. Also, this means that any 3rd party developer could create

their own custom UI and pull in Nutanix data via REST.

Below we show a small snippet of the Nutanix REST API explorer which allows developers to see the API and format:



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 21/46

Operations can be expanded to display details and examples of the REST call:

Availability Domains

Availability Domains aka node/block/rack awareness is a key struct for distributed systems to abide by for determining

component and data placement.  NDFS is currently node and block aware, however this will increase to rack aware as

cluster sizes grow.  Nutanix refers to a “block” as the chassis which contains either one, two or four server “nodes”.

NOTE: at minimum of 3 blocks must be utilized for block awareness to be activated, otherwise node awareness will be

defaulted to.  It is recommended to utilized uniformly populated blocks to ensure block awareness is enabled.  Common

scenarios and the awareness level utilized can be found at the bottom of this section.  The 3 block requirement is due to

ensure quorum.

For example a 3450 would be a block which holds 4 nodes.  The reason for distributing roles or data across blocks to

ensure if a block fails or needs maintenance the system can continue to run without interruption.  NOTE: Within a

block the redundant PSU and fans are the only shared components

Awareness can be broken into a few key focus areas:

Data (The VM data)

Metadata (Cassandra)

Configuration Data (Zookeeper)

Data

http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/RestAPI.png
http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/RestAPI2.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 22/46

With NDFS data replicas will be written to other blocks in the cluster to ensure that in the case of a block failure or

planned downtime, the data remains available.  This is true for both RF2 and RF3 scenarios as well as in the case of a

block failure.

An easy comparison would be “node awareness” where a replica would need to be replicated to another node which will

provide protection in the case of a node failure.  Block awareness further enhances this by providing data availability

assurances in the case of block outages.

Below we show how the replica placement would work in a 3 block deployment:

In the case of a block failure, block awareness will be maintained and the re-replicated blocks will be replicated to

other blocks within the cluster:

http://cdn1.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_BlockAwareness_DataNorm.png
http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_BlockAwareness_DataFail2.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 23/46

Metadata

As mentioned in the Scalable Metadata section above, Nutanix leverages a heavily modified Cassandra platform to store

metadata and other essential information.  Cassandra leverages a ring-like structure and replicates to n number of

peers within the ring to ensure data consistency and availability.

Below we show an example of the Cassandra ring for a 12 node cluster:

Cassandra peer replication iterates through nodes in a clockwise manner throughout the ring.  With block awareness

the peers are distributed among the blocks to ensure no two peers are on the same block.

Below we show an example node layout translating the ring above into the block based layout:

With this block aware nature, in the event of a block failure there will still be at least two copies of the data (with

http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_CassandraRing_12Node3.png
http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_CassandraRing_BlockLayout_Write2.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 24/46

Metadata RF3 – In larger clusters RF5 can be leveraged).

Below we show an example of all of the nodes replication topology to form the ring (yes – its a little busy):

Configuration Data

Nutanix leverages Zookeeper to store essential configuration data for the cluster.  This role is also distributed in a block

aware manner to ensure availability in the case of a block failure.

Below we show an example layout showing 3 Zookeeper nodes distributed in a block aware manner:

In the event of a block outage, meaning on of the Zookeeper nodes will be gone, the Zookeeper role would be

transferred to another node in the cluster as shown below:

http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_CassandraRing_BlockLayout_Full.png
http://cdn1.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Zookeeper_BlockLayout.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 25/46

 

Below we breakdown some common scenarios and what level of awareness will be utilized:

< 3 blocks –> NODE awareness

3+ blocks uniformly populated –> BLOCK + NODE awareness

3+ blocks not uniformly populated

If SSD tier variance between blocks is > max variance –> NODE awareness

Example: 2 x 3450 + 1 x 3150

If SSD tier variance between blocks is < max variance  –> BLOCK + NODE awareness

Example: 2 x 3450 + 1 x 3350

NOTE: max tier variance is calculated as: 100 / (RF+1)

Eg. 33% for RF2 or 25% for RF3

Snapshots & Clones

NDFS provides native support for offloaded snapshots and clones which can be leveraged via VAAI, ODX, ncli, REST,

Prism, etc.  Both the snapshots and clones leverage the redirect-on-write algorithm which is the most effective and

efficient.

As explained in the Data Structure section above, a virtual machine consists of files (vmdk/vhdk) which are vDisks on

the Nutanix platform.  A vDisk is composed of extents which are logically contiguous chunks of data, which are stored

within extent groups which are physically contiguous data  stored as files on the storage devices.

When a snapshot or clone is taken the base vDisk is marked immutable and another vDisk is created as read/write.  At

this point both vDisks have the same block map, which is a metadata mapping of the vDisk to its corresponding

extents. Contrary to traditional approaches which require traversal of the snapshot chain, which can add read latency,

each vDisk has its own block map.  This eliminates any of the overhead normally seen by large snapshot chain depths

and allows you to take continuous snapshots without any performance impact.

Below we show an example of how this works when a snapshot is taken (NOTE: I need to give some credit to NTAP as a

http://cdn2.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Zookeeper_BlockLayout_Fail.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 26/46

base for these diagrams as I thought their representation was the clearest):

 

The same method applies when a snapshot or clone of a previously snapped or cloned vDisk is performed:

The same methods are used for both snapshots and/or clones of a VM or vDisk(s).  When a VM or vDisk is cloned the

current block map is locked and the clones are created.  These updates are metadata only so no I/O actually takes place.

 The same method applies for clones of clones; essentially the previously cloned VM acts as the “Base vDisk” and upon

cloning that block map is locked and two “clones” are created: one for the VM being cloned and another for the new

clone.  They both inherit the prior block map and any new writes/updates would take place on their individual block

maps.

http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_Snap3Stagev2.png
http://cdn1.stevenpoitras.com/wp-content/uploads/2014/05/NDFS_SnapMulti.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 27/46

 

As mentioned prior each VM/vDisk has its own individual block map.  So in the above example, all of the clones from

the base VM would now own their block map and any write/update would occur there.  Below we show an example of

what this looks like:

 

Any subsequent clones or snapshots of a VM/vDisk would cause the original block map to be locked and would create a

new one for R/W access.

 Multi-Site Disaster Recovery

Nutanix provides native DR and replication capabilities which build upon the same features explained in the Snapshots

& Clones section.  Cerebro is the component responsible for managing the DR and replication in NDFS.  Cerebro runs on

every node and a Cerebro master is elected (similar to NFS master) and is responsible for managing replication tasks. 

In the event the CVM acting as Cerebro master fails, another is elected and assumes the role.  The Cerebro page can be

found on <CVM IP>:2020.

The DR function can be broken down into a few key focus areas:

http://cdn3.stevenpoitras.com/wp-content/uploads/2014/05/NDFS_CloneBase.png
http://cdn1.stevenpoitras.com/wp-content/uploads/2014/05/NDFS_CloneWriteIO.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 28/46

Replication Topology

Implementation Constructs

Global Deduplication

Replication Topologies

Traditionally there are a few key replication topologies: Site to site, Hub and spoke and Full and/or Partial mesh. 

Contrary to traditional solutions which only allow for Site to site or hub and spoke, Nutanix provides a fully mesh or

flexible many-to-many model.

Essentially this allows the admin to determine a replication capability that meets their needs.

Implementation Constructs

Within Nutanix DR there are a few key constructs which are explained below:

Remote Site

Key Role: A remote Nutanix cluster

Description: A remote Nutanix cluster which can be leveraged as a target for backup or DR purposes.

Pro tip: Ensure the target site has ample capacity (compute/storage) to handle a full site failure.  In certain cases

replication/DR between racks within a single site can also make sense.

Protection Domain (PD)

Key Role: Macro group of VMs and/or files to protect

Description: A group of VMs and/or files to be replicated together on a desired schedule.  A PD can protect a full

container or you can select individual VMs and/or files

Pro tip: Create multiple PDs for various services tiers driven by a desired RPO/RTO.  For file distribution (eg.

golden images, ISOs, etc.) you can create a PD with the files to replication.

Consistency Group (CG)

Key Role: Subset- of VMs/files in PD to be crash consistent

Description: VMs and/or files which are part of a Protection Domain which need to be snapshotted in a crash

consistent manner.  This ensures that when VMs/files are recovered they come up in a consistent state.  A

protection domain can have multiple consistency groups.

http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_DR_topo.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 29/46

Pro tip: Group dependent application or service VMs in a consistency group to ensure they are recovered in a

consistent state (eg. App and DB)

Replication Schedule

Key Role: Snapshot and replication schedule

Description: Snapshot and replication schedule for VMs in a particular PD and CG

Pro tip: The snapshot schedule should be equal to your desired RPO

Retention Policy

Key Role: Number of local and remote snapshots to keep

Description: The retention policy defines the number of local and remote snapshots to retain.  NOTE: A remote

site must be configured for a remote retention/replication policy to be configured.

Pro tip: The retention policy should equal the number of restore points required per VM/file

Below we show a logical representation of the relationship between a PD, CG and VM/Files for a single site:

It’s important to mention that a full container can be protected for simplicity, however the platform provides the

ability to protect down to the granularity of a single VM and/or file level.

Global Deduplication

As explained in the Elastic Dedup Engine section above, NDFS has the ability to deduplicate data by just updating

metadata pointers.

The same concept is applied to the DR and replication feature.  Before sending data over the wire, NDFS will query

remote site and check whether or not the fingerprint(s) already exist on the target (meaning the data already exists). 

If so, no data will be shipped over the wire and only a metadata update will occur.

For data which doesn’t exist on the target the data will be compressed and sent to the target site.  At this point the data

exists on both sites is usable for deduplication.

Below we show an example three site deployment where each site contains one of more protection domains (PD):

http://cdn2.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_PD_Structure.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 30/46

I’ll cover how replication works in a section to come!

top

Administration

Important Pages

These are advanced Nutanix pages besides the standard user interface that allow you to monitor detailed stats and

metrics.  The URLs are formatted in the following way: http://<Nutanix CVM IP/DNS>:<Port/path (mentioned below)>

 Example: http://MyCVM-A:2009  NOTE: if you’re on a different subnet IPtables will need to be disabled on the CVM to

access the pages.

# 2009 Page

This is a Stargate page used to monitor the back end storage system and should only be used by advanced users.

 I’ll have a post that explains the 2009 pages and things to look for.

# 2009/latency Page

This is a Stargate page used to monitor the back end latency

# 2009/h/traces Page

This is the Stargate page used to monitor activity traces for operations

# 2010 Page

This is the Curator page which is used for monitoring curator runs

# 2010/master/control Page

This is the Curator control page which is used to manually start Curator jobs

# 2011 Page

This is the Chronos page which monitors jobs and tasks scheduled by curator

http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/NDFS_DR_Dedup.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 31/46

# 2020 Page

 This is the Cerebro page which monitors the protection domains, replication status and DR

# 7777 Page

This is the Aegis Portal page which can be used to get good logs and statistics, useful commands, and modify

Gflags

top

Cluster Commands

# Check cluster status

 # Check local CVM service status

 # Nutanix cluster upgrade

 # Restart cluster service from CLI

 # Start cluster service from CLI

 # Restart local service from CLI

1
2

3

# Description: Check cluster status from the CLI
 

cluster status

1
2
3

# Description: Check a single CVM's service status from the CLI
 
genesis status

1

2
3
4
5

6
7
8
9

10
11
12

# Description: Perform rolling (aka "live") cluster upgrade from the CLI

 
# Upload upgrade package to ~/tmp/ on one CVM
 
# Untar package

tar xzvf ~/tmp/nutanix*
 
# Perform upgrade
~/tmp/install/bin/cluster -i ~/tmp/install upgrade

 
# Check status
upgrade_status

1
2

3
4
5
6

7

# Description: Restart a single cluster service from the CLI
 

# Stop service
cluster stop <Service Name>
 
# Start stopped services

cluster start  #NOTE: This will start all stopped services

1
2
3

4
5
6
7

8
9

# Description: Start stopped cluster services from the CLI
 
# Start stopped services 

cluster start  #NOTE: This will start all stopped services
 
# OR
 

# Start single service
Start single service: cluster start  <Service Name>



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 32/46

 # Start local service from CLI

 # Cluster add node from cmdline

 # Find number of vDisks

 # Find cluster id

 # Disable IPtables

# Check for Shadow Clones

 # Reset Latency Page Stats

 # Find Number of vDisks

 # Start Curator scan from CLI

1
2
3

4
5
6
7

# Description: Restart a single cluster service from the CLI
 
# Stop Service

genesis stop <Service Name>
 
# Start Service
cluster start

1
2
3

# Description: Start stopped cluster services from the CLI
 
cluster start #NOTE: This will start all stopped services

1
2

3

# Description: Perform cluster add-node from CLI
 

ncli cluster discover-nodes | egrep "Uuid" | awk '{print $4}' | xargs -I UUID ncli cluster add-node node-uuid=UUID

1
2
3

# Description: Displays the number of vDisks
 
vdisk_config_printer | grep vdisk_id | wc -l

1

2
3

# Description: Find the cluster ID for the current cluster

 
zeus_config_printer | grep cluster_id

1
2
3

# Description: Disables IPtables service on all cluster CVMs
 
for i in `svmips`;do ssh $i "sudo /etc/init.d/iptables save && sudo /etc/init.d/iptables stop && sudo chkconfig iptables off"

1
2
3

# Description: Displays the shadow clones in the following format:  name#id@svm_id
 
vdisk_config_printer | grep '#'

1
2

3

# Description: Reset the Latency Page (<CVM IP>:2009/latency) counters
 

for i in `svmips`;do wget $i:2009/latency/reset;done

1
2
3

# Description: Find the current number of vDisks (files) on NDFS
 
vdisk_config_printer | grep vdisk_id | wc -l

1

2

# Description: Starts a Curator full scan from the CLI

 



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 33/46

 # Compact ring

 # Find NOS version

 # Find CVM version

 # Manually fingerprint vDisk(s)

 # Echo Factory_Config.json for all cluster nodes

  # Upgrade a single Nutanix node’s NOS version

 # Install Nutanix Cluster Check (NCC)

 # Run Nutanix Cluster Check (NCC)

3 for i in `svmips`;do wget -O - "http://$i:2010/master/api/client/StartCuratorTasks?task_type=2"; done

1
2
3

# Description: Compact the metadata ring
 
for i in `svmips`; do echo $i;ssh $i `nodetool -h localhost compact`;done

1

2
3

# Description: Find the NOS  version (NOTE: can also be done using NCLI)

 
for i in `svmips`;do echo $i;ssh $i 'cat /etc/nutanix/release_version';done

1
2

3

# Description: Find the CVM image version
 

for i in `svmips`; do echo $i;ssh $i `cat /etc/nutanix/svm-version`;done

1
2
3

# Description: Create fingerprints for a particular vDisk (For dedupe)  NOTE: dedupe must be enabled on the container
 
vdisk_manipulator –vdisk_id=<vDisk ID> --operation=add_fingerprints

1

2
3

# Description: Echos the factory_config.jscon for all nodes in the cluster

 
for i in `svmips`; do echo $i; ssh $i "cat /etc/nutanix/factory_config.json"; done

1
2
3

# Description: Upgrade a single node's NOS version to match that of the cluster
 
~/cluster/bin/cluster -u <NEW_NODE_IP> upgrade_node

1

2
3
4
5

6
7
8

9
10
11
12

13
14
15

# Description: Installs the Nutanix Cluster Check (NCC) health script to test for potential issues and cluster health

 
# Download NCC from the Nutanix Support Portal (portal.nutanix.com)
 
# SCP .tar.gz to the /home/nutanix directory

 
# Untar NCC .tar.gz
tar xzmf <ncc .tar.gz file name> --recursive-unlink

 
# Run install script
./ncc/bin/install.sh -f <ncc .tar.gz file name>
 

# Create links
source ~/ncc/ncc_completion.bash
echo "source ~/ncc/ncc_completion.bash" >> ~/.bashrc

1

2
3
4

5

# Description: Runs the Nutanix Cluster Check (NCC) health script to test for potential issues and cluster health.  This is a great first step when troubleshooting any cluster issues.

 
# Make sure NCC is installed (steps above)
 

# Run NCC health checks



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 34/46

top

NCLI

NOTE: All of these actions can be performed via the HTML5 GUI.  I just use these commands as part of my bash

scripting to automate tasks.

# Add subnet to NFS whitelist

# Display Nutanix Version

 # Display hidden NCLI options

# List Storage Pools

 # List containers

 # Create container

 # List VMs

 # List public keys

 # Add public key

6 ncc health_checks run_all

1
2
3

# Description: Adds a particular subnet to the NFS whitelist
 
ncli cluster add-to-nfs-whitelist ip-subnet-masks=10.2.0.0/255.255.0.0

1
2

3

# Description: Displays the current version of the Nutanix software
 

ncli cluster version

1
2
3

# Description: Displays the hidden ncli commands/options
 
ncli helpsys listall hidden=true [detailed=false|true]

1

2
3

# Description: Displays the existing storage pools

 
ncli sp ls

1
2
3

# Description: Displays the existing containers
 
ncli ctr ls

1
2
3

# Description: Creates a new container
 
ncli ctr create name=<NAME> sp-name=<SP NAME>

1
2

3

# Description: Displays the existing VMs
 

ncli vm ls

1
2
3

# Description: Displays the existing public keys
 
ncli cluster list-public-keys



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 35/46

 # Remove public key

# Create protection domain

 # Create remote site

 # Create protection domain for all VMs in container

 # Create protection domain with specified VMs

# Create protection domain for NDFS files (aka vDisk)

 # Create snapshot of protection domain

 # Create snapshot and replication schedule to remote site

 # List replication status

1

2
3
4
5

6

# Description: Adds a public key for cluster access

 
# SCP private key to CVM
 
# Add private key to cluster

ncli cluster add-public-key name=myPK file-path=~/mykey.pub

1
2
3

# Description: Removes a public key for cluster access
 
ncli cluster remove-public-keys name=myPK

1

2
3

# Description: Creates a protection domain

 
ncli pd create name=<NAME>

1
2
3

# Description: Create a remote site for replication
 
ncli remote-site create name=<NAME> address-list=<Remote Cluster IP>

1
2
3

# Description: Protect all VMs in the specified container
 
ncli pd protect name=<PD NAME> ctr-id=<Container ID> cg-name=<NAME>

1
2

3

# Description: Protect the VMs specified
 

ncli pd protect name=<PD NAME> vm-names=<VM Name(s)> cg-name=<NAME>

1
2

3

# Description: Protect the NDFS Files specified
 

ncli pd protect name=<PD NAME> files=<File Name(s)> cg-name=<NAME>

1
2
3

# Description: Create a one-time snapshot of the protection domain
 
ncli pd add-one-time-snapshot name=<PD NAME> retention-time=<seconds>

1
2

3

# Description: Create a recurring snapshot schedule and replication to n remote sites
 

ncli pd set-schedule name=<PD NAME> interval=<seconds> retention-policy=<POLICY> remote-sites=<REMOTE SITE NAME>

1
2
3

# Description: Monitor replication status
 
ncli pd list-replication-status



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 36/46

# Migrate protection domain to remote site

 # Activate protection domain

 # Enable NDFS Shadow Clones

# Enable Dedup for vDisk

top

Metrics & Thresholds

The below will cover specific metrics and thresholds on the Nutanix back end.  More updates to these coming shortly!

2009 Stargate – Overview

Metric Explanation Threshold/Target

Start time The start time of the Stargate service

Build version The build version currently running

Build last commit date The last commit date of the build

Stargate handle The Stargate handle

iSCSI handle The iSCSI handle

SVM id The SVM id of Stargate

Incarnation id

Highest allocated opid

Highest contiguous completed opid

Extent cache hits The % of read requests served directly from the in-memory extent

1

2
3

# Description: Fail-over a protection domain to a remote site

 
ncli pd migrate name=<PD NAME> remote-site=<REMOTE SITE NAME>

1
2

3

# Description: Activate a protection domain at a remote site
 

ncli pd activate name=<PD NAME>

1
2
3

# Description: Enables the NDFS Shadow Clone feature
 
ncli cluster edit-params enable-shadow-clones=true

1

2
3

# Description: Enables fingerprinting and/or on disk dedup for a specific vDisk

 
ncli vdisk edit name=<VDISK NAME> fingerprint-on-write=<true/false> on-disk-dedup=<true/false>

http://cdn3.stevenpoitras.com/wp-content/uploads/2013/09/2009-main.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 37/46

cache

Extent cache usage The MB size of the extent cache

Content cache hits The % of read requests served directly from the content cache

Content cache flash pagein pct

Content cache memory usage The MB size of the in-memory content cache

Content cache flash usage The MB size of the SSD content cache

QoS Queue (size/admitted) The admission control queue size and number of admitted ops

Oplog QoS queue (size/admitted) The oplog queue size and number of admitted ops

NFS Flush Queue (size/admitted)

NFS cache usage

 2009 Stargate – Cluster State

Metric Explanation Threshold/Target

SVM Id The Id of the Controller

IP:port The IP:port of the Stargate handle

Incarnation

SSD-PCIe The SSD-PCIe devices and size/utilization

SSD-SATA The SSD-SATA devices and size/utilization

DAS-SATA The HDD-SATA devices  and size/utilization

Container Id The Id of the container

Container Name The Name of the container

Max capacity (GB) – Storage pool The Max capacity of the storage pool

Max capacity (GB) – Container The Max capacity of the container (will normally match the storage

pool size)

Reservation (GB) – Total across

vdisks

The reservation in GB across vdisks

Reservation (GB) – Admin

provisioned

Container usage (GB) – Total The total usage in GB per container

Container usage (GB) – Reserved The reservation used in GB per container

Container usage (GB) – Garbage

Unreserved available (GB) –

Container

The available capacity in GB per container

Unreserved available (GB) – Storage

pool

The available capacity in GB for the storage pool

2009 Stargate – NFS Slave

http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/2009-cluster_state.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 38/46

Metric Explanation Threshold/Target

Vdisk Name The name of the Vdisk on NDFS

Unstable data – KB

Unstable data – Ops/s

Unstable data – KB/s

Outstanding Ops – Read The number of outstanding read ops for the Vdisk

Outstanding Ops – Write The number of outstanding write ops for the Vdisk

Ops/s – Read The number of current read operations per second for the Vdisk

Ops/s – Write The number of current write operations per second for the Vdisk

Ops/s – Error The number of current error (failed) operations per second for the Vdisk

KB/s – Read The read throughput in KB/s for the Vdisk

KB/s – Write The write throughput in KB/s for the Vdisk

Avg latency (usec) – Read The average read op latecy in micro seconds for the Vdisk

Avg latency (usec) – Write The average write op latecy in micro seconds for the Vdisk

Avg op size The average op size in bytes for the Vdisk

Avg outstanding The average outstanding ops for the Vdisk

% busy The % busy of the Vdisk

Container Name The name of the container

Outstanding Ops – Read The number of outstanding read ops for the container

Outstanding Ops – Write The number of outstanding write ops for the container

Outstanding Ops – NS lookup The number of oustanding NFS lookup ops for the container

Outstanding Ops – NS update The number of outstanding NFS update ops for the container

Ops/s – Read The number of current read operations per second for the container

Ops/s – Write The number of current write operations per second for the container

Ops/s – NS lookup The number of current NFS lookup ops for the container

Ops/s – NS update The number of current NFS update ops for the container

Ops/s – Error The number of current error (failed) operations per second for the

container

KB/s – Read The read throughput in KB/s for the container

KB/s – Write The write throughput in KB/s for the container

Avg latency (usec) – Read The average read op latecy in micro seconds for the container

Avg latency (usec) – Write The average write op latecy in micro seconds for the container

Avg latency (usec) – NS

lookup

The average NFS lookup latency in micro seconds for the container

Avg latency (usec) – NS

update

The average NFS lookup update in micro seconds for the container

Avg op size The average op size in bytes for the container

Avg outstanding The average outstanding ops for the container

http://cdn1.stevenpoitras.com/wp-content/uploads/2013/09/2009-NFSSlafe.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 39/46

% busy The % busy of the container

2009 Stargate – Hosted VDisks

Metric Explanation Threshold/Target

Vdisk Id The Id of the Vdisk on NDFS

Vdisk Name The name of the Vdisk on NDFS

Usage (GB) The usage in GB per Vdisk

Dedup (GB)

Oplog – KB The size of the Oplog for the Vdisk

Oplog – Fragments The number of fragments of the Oplog for the Vdisk

Oplog – Ops/s The number of current opeations per second for the Vdisk

Oplog – KB/s The throughput in KB/s for the Vdisk

Outstanding Ops – Read The number of outstanding read ops for the Vdisk

Outstanding Ops – Write The number of outstanding write ops for the Vdisk

Outstanding Ops – Estore The number of outstanding ops to the extent store for the Vdisk

Ops/s – Read The number of current read operations per second for the Vdisk

Ops/s – Write The number of current write operations per second for the Vdisk

Ops/s – Error The number of current error (failed) operations per second for the Vdisk

Ops/s – Random

KB/s – Read The read throughput in KB/s for the Vdisk

KB/s – Write The write throughput in KB/s for the Vdisk

Avg latency (usec) The average op latency in micro seconds for the Vdisk

Avg op size The average op size in bytes for the Vdisk

Avg qlen The average queue length for the Vdisk

% busy

2009 Stargate – Extent Store

Metric Explanation Threshold/Target

Disk Id The disk id of the physical device

Mount point The mount point of the physical device

Outstanding Ops – QoS Queue The number of (primary/secondary) ops for the device

Outstanding Ops – Read The number of outstanding read ops for the device

Outstanding Ops – Write The number of outstanding write ops for the device

Outstanding Ops – Replicate

Outstanding Ops – Read Replica

Ops/s – Read The number of current read operations per second for the device

Ops/s – Write The number of current write operations per second for the device

Ops/s – Error The number of current error (failed) operations per second for the device

Ops/s – Random

http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/2009-hosted_vdisk.png
http://cdn.stevenpoitras.com/wp-content/uploads/2013/09/2009-extent_store.png


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 40/46

KB/s – Read The read throughput in KB/s for the device

KB/s – Write The write throughput in KB/s for the device

Avg latency (usec) The average op latency in micro seconds for the device

Avg op size The average op size in bytes for the device

Avg qlen The average queue length for the device

Avg qdelay The average queue delay for the device

% busy

Size (GB)

Total usage (GB) The total usage in GB for the device

Unshared usage (GB)

Dedup usage (GB)

Garbage (GB)

Egroups The number of extent groups for the device

Corrupt Egroups The number of corrupt (bad) extent groups for the device

top

Gflags

Coming soon 

top

Troubleshooting

# Find cluster error logs

 # Find cluster fatal logs

top

Book of vSphere

Architecture

To be input

top

How It Works

Array Offloads – VAAI

1

2
3
4
5

6

# Description: Find ERROR logs for the cluster

 
for i in `svmips`;do ssh $i "cat ~/data/logs/<COMPONENT NAME or *>.ERROR";done
 
# Example for Stargate

for i in `svmips`;do ssh $i "cat ~/data/logs/Stargate.ERROR";done

1
2
3
4

5
6

# Description: Find FATAL logs for the cluster
 
for i in `svmips`;do ssh $i "cat ~/data/logs/<COMPONENT NAME or *>.FATAL";done
 

# Example for Stargate
for i in `svmips`;do ssh $i "cat ~/data/logs/Stargate.FATAL";done



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 41/46

The Nutanix platform supports the VMware APIs for Arry Integration (VAAI) which allows the hypervisor to offload

certain tasks to the array.  This is much more efficient as the hypervisor doesn’t need to be the “man in the middle”.

Nutanix currently supports the VAAI primitives for NAS including the ‘full file clone’, ‘fast file clone’ and ‘reserve

space’ primitives.  Here’s a good article explaining the various primitives: LINK.  For both the full and fast file clones a

NDFS “fast clone” is done meaning a writable snapshot (using re-direct on write) for each clone is created.  Each of

these clones has its own block map meaning that chain depth isn’t anything to worry about. The following will

determine whether or not VAAI will be used for specific scenarios:

Clone VM with Snapshot –> VAAI will NOT be used

Clone VM without Snapshot which is Powered Off –> VAAI WILL be used

Clone VM to a different Datastore/Container –> VAAI will NOT be used

Clone VM which is Powered On  –> VAAI will NOT be used

These scenarios apply to VMware View:

View Full Clone (Template with Snapshot) –> VAAI will NOT be used

View Full Clone (Template w/o Snapshot) –> VAAI WILL be used

View Linked Clone (VCAI) –> VAAI WILL be used

You can validate VAAI operations are taking place by using the ‘NFS Adapter’ Activity Traces page.

top

Administration

To be input

top

Important Pages

To be input

top

Command Reference

# ESXi cluster upgrade

Performing a rolling reboot of ESXi hosts: For PowerCLI on automated hosts reboots, SEE HERE

# Restart ESXi host services

1
2
3
4

5
6
7
8

9
10
11

# Description: Perform an automated upgrade of ESXi hosts using the CLI
 
# Upload upgrade offline bundle to a Nutanix NFS container
 

# Log in to Nutanix CVM
 
# Perform upgrade
for i in `hostips`;do echo $i && ssh root@$i “esxcli software vib install -d /vmfs/volumes/<Datastore Name>/<Offline bundle 

 
# Example
for i in `hostips`;do echo $i && ssh root@$i “esxcli software vib install -d /vmfs/volumes/NTNX-upgrade/update-from-esxi5

1
2

3

# Description: Restart each ESXi hosts services in a incremental manner
 

for i in `hostips`;do ssh root@$i "services.sh restart";done

http://www.vmware.com/resources/techresources/10337
http://cormachogan.com/2012/11/08/vaai-comparison-block-versus-nas/
http://stevenpoitras.com/2013/08/advanced-nutanix-simple-esxi-host-upgrades/


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 42/46

 # Display ESXi host nics in ‘Up’ state

 # Display ESXi host 10GbE nics and status

 # Display ESXi host active adapters

 # Display ESXi host routing tables

# Check if VAAI is enabled on datastore

 # Set VIB acceptance level to community supported

 # Install VIB

 # Check ESXi ramdisk space

 # Clear pynfs logs

1
2
3

# Description: Display the ESXi host's nics which are in a 'Up' state
 
for i in `hostips`;do echo $i && ssh root@$i esxcfg-nics -l | grep Up;done

1
2

3

# Description: Display the ESXi host's 10GbE nics and status
 

for i in `hostips`;do echo $i && ssh root@$i esxcfg-nics -l | grep ixgbe;done

1
2
3

# Description: Display the ESXi host's active, standby and unused adapters
 
for i in `hostips`;do echo $i &&  ssh root@$i "esxcli network vswitch standard policy failover get --vswitch-name vSwitch0"

1

2
3

# Description: Display the ESXi host's routing tables

 
for i in `hostips`;do ssh root@$i 'esxcfg-route -l';done

1
2

3

# Description: Check whether or not VAAI is enabled/supported for a datastore
 

vmkfstools -Ph /vmfs/volumes/<Datastore Name>

1
2
3

# Description: Set the vib acceptance level to CommunitySupported allowing for 3rd party vibs to be installed
 
esxcli software acceptance set --level CommunitySupported

1
2

3
4
5
6

7

#Description: Install a vib without checking the signature
 

esxcli software vib install --viburl=/<VIB directory>/<VIB name> --no-sig-check
 
# OR
 

esxcli software vib install --depoturl=/<VIB directory>/<VIB name> --no-sig-check

1

2
3

# Description: Check free space of ESXi ramdisk

 
for i in `hostips`;do echo $i; ssh root@$i 'vdf -h';done

1
2
3

# Description: Clears the pynfs logs on each ESXi host
 
for i in `hostips`;do echo $i; ssh root@$i '> /pynfs/pynfs.log';done



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 43/46

top

Metrics & Thresholds

To be input

top

Troubleshooting

To be input

top

Book of Hyper-V

Architecture

To be input

top

How It Works

Array Offloads – ODX

The Nutanix platform supports the Microsoft Offloaded Data Transfers (ODX) which allows the hypervisor to offload

certain tasks to the array.  This is much more efficient as the hypervisor doesn’t need to be the “man in the middle”.

Nutanix currently supports the ODX primitives for SMB which include full copy and zeroing operations.  However

contrary to VAAI which has a “fast file” clone operation (using writable snapshots) the ODX primitives do not have an

equivalent and perform a full copy.  Given this, it is more efficient to rely on the native NDFS clones which can

currently be invoked via nCLI, REST, or Powershell CMDlets

Currently ODX IS invoked for the following operations:

In VM or VM to VM file copy on NDFS SMB share

SMB share file copy

Deploy template from SCVMM Library (NDFS SMB share) - NOTE: Shares must be added to the SCVMM cluster

using short names (eg. not FQDN).  An easy way to force this is to add an entry into the hosts file for the cluster

(eg. 10.10.10.10     nutanix-130).

ODX is NOT invoked for the following operations:

Clone VM through SCVMM

Deploy template from SCVMM Library (non-NDFS SMB Share)

XenDesktop Clone Deployment

You can validate ODX operations are taking place by using the ‘NFS Adapter’ Activity Traces page (yes, I said NFS, even

though this is being performed via SMB).  The operations activity show will be ‘NfsSlaveVaaiCopyDataOp‘ when

copying a vDisk and ‘NfsSlaveVaaiWriteZerosOp‘ when zeroing out a disk.

top

http://technet.microsoft.com/en-us/library/hh831628.aspx


2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 44/46

Administration

To be input

top

Important Pages

To be input

top

Command Reference

# Execute command on multiple remote hosts

 # Check available VMQ Offloads

# Disable VMQ for VMs matching a specific prefix

 # Enable VMQ for VMs matching a certain prefix

 # Power-On VMs matching a certain prefix

 # Shutdown VMs matching a certain prefix

 # Stop VMs matching a certain prefix

1
2
3
4
5
6

# Description: Execute a powershell on one or many remote hosts
 
$targetServers = "Host1","Host2","Etc"
Invoke-Command -ComputerName  $targetServers {
         <COMMAND or SCRIPT BLOCK>
}

1
2
3

# Description: Display the available number of VMQ offloads for a particular host
 
gwmi –Namespace “root\virtualization\v2” –Class Msvm_VirtualEthernetSwitch | select elementname, MaxVMQOffloads

1
2
3
4

# Description: Disable VMQ for specific VMs
 
$vmPrefix = "myVMs"
Get-VM | Where {$_.Name -match $vmPrefix} | Get-VMNetworkAdapter | Set-VMNetworkAdapter -VmqWeight 0

1
2
3
4

# Description: Enable VMQ for specific VMs
 
$vmPrefix = "myVMs"
Get-VM | Where {$_.Name -match $vmPrefix} | Get-VMNetworkAdapter | Set-VMNetworkAdapter -VmqWeight 1

1
2
3
4

# Description: Power-On VMs matchin a certain prefix
 
$vmPrefix = "myVMs"
Get-VM | Where {$_.Name -match $vmPrefix -and $_.StatusString -eq "Stopped"} | Start-VM

1
2
3
4

# Description: Shutdown VMs matchin a certain prefix
 
$vmPrefix = "myVMs"
Get-VM | Where {$_.Name -match $vmPrefix -and $_.StatusString -eq "Running"}} | Shutdown-VM -RunAsynchronously

1

2
3

# Description: Stop VMs matchin a certain prefix

 
$vmPrefix = "myVMs"



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 45/46

 # Get Hyper-V host RSS settings

top

Metrics & Thresholds

To be input

top

Troubleshooting

To be input

top

Revisions

1. 09-04-2013 | Initial Version

2. 09-04-2013 | Updated with components section

3. 09-05-2013 | Updated with I/O path overview section

4. 09-09-2013 | Updated with converged architecture section

5. 09-11-2013 | Updated with data structure section

6. 09-24-2013 | Updated with data protection section

7. 09-30-2013 | Updated with data locality section

8. 10-01-2013 | Updated with shadow clones section

9. 10-07-2013 | Updated with scalable metadata section

10. 10-11-2013 | Updated with elastic dedupe engine

11. 11-01-2013 | Updated with networking and I/O section

12. 11-07-2013 | Updated with CVM autopathing section

13. 01-23-2014 | Updated with new content structure and layout

14. 02-10-2014 | Updated with storage layers and monitoring

15. 02-18-2014 | Updated with array offloads sections

16. 03-12-2014 | Updated with genesis

17. 03-17-2014 | Updated spelling and grammar

18. 03-19-2014 | Updated with apis and interfaces section

19. 03-25-2014 | Updated script block formatting

20. 03-26-2014 | Updated with dr & protection domain NCLI commands

21. 04-15-2014 | Updated with failure domains section and 4.0 updates

4 Get-VM | Where {$_.Name -match $vmPrefix} | Stop-VM

1

2
3

# Description: Get Hyper-V host RSS (recieve side scaling) settings

 
Get-NetAdapterRss



2014/7/6 The Nutanix Bible |  StevenPoitras.com StevenPoitras.com

http://stevenpoitras.com/the-nutanix-bible/ 46/46

22. 04-23-2014 | Updated with command to echo factory_config.json

23. 05-28-2014 | Updated with snapshots and clones section

24. 06-09-2014 | Updated with multi-site disaster recovery section

25. 06-10-2014 | Updated cluster components graphic

top

Tweet 473 1395Like

Categories

AskSteve

Benchmarking

Nutanix

Powershell

Splunk

SQL

Uncategorized

VMware

Archives

March 2014

 (1)

February 2014

 (2)

November 2013

 (2)

September 2013

 (3)

August 2013

 (1)

July 2013

 (2)

June 2013

 (6)

May 2013

 (3)

Legal Mumbo Jumbo

Copyright © Steven Poitras, The Nutanix

Bible and StevenPoitras.com, 2014.

Unauthorized use and/or duplication of this

material without express and written

permission from this blog’s author and/or

owner is strictly prohibited. Excerpts and

links may be used, provided that full and

clear credit is given to Steven Poitras and

StevenPoitras.com with appropriate and

specific direction to the original content.

Copyright © 2014 · All Rights Reserved · StevenPoitras.com

Magazine Theme v4 by Organic Themes · WordPress Hosting · RSS Feed · Log in

https://twitter.com/intent/tweet?original_referer=http%3A%2F%2Fstevenpoitras.com%2Fthe-nutanix-bible%2F&text=The%20Nutanix%20Bible&tw_p=tweetbutton&url=http%3A%2F%2Fstevenpoitras.com%2Fthe-nutanix-bible%2F&via=StevenPoitras
http://twitter.com/search?q=http%3A%2F%2Fstevenpoitras.com%2Fthe-nutanix-bible%2F
http://stevenpoitras.com/category/asksteve/
http://stevenpoitras.com/category/benchmarking/
http://stevenpoitras.com/category/nutanix/
http://stevenpoitras.com/category/powershell/
http://stevenpoitras.com/category/splunk/
http://stevenpoitras.com/category/sql/
http://stevenpoitras.com/category/uncategorized/
http://stevenpoitras.com/category/vmware/
http://stevenpoitras.com/2014/03/
http://stevenpoitras.com/2014/02/
http://stevenpoitras.com/2013/11/
http://stevenpoitras.com/2013/09/
http://stevenpoitras.com/2013/08/
http://stevenpoitras.com/2013/07/
http://stevenpoitras.com/2013/06/
http://stevenpoitras.com/2013/05/
http://www.organicthemes.com/themes/magazine-theme/
http://www.organicthemes.com/
http://kahunahost.com/
http://stevenpoitras.com/feed/
http://stevenpoitras.com/wp-login.php
http://www.organicthemes.com/

